字体:大 中 小
护眼
关灯
上一章
目录
下一页
第三十九章 概率问题 (第1/2页)
走在路上,牧均与陶道明都不约而同的没有谈论起有关典经的事情,反而对另一件事若有所思。 陶道明首先叹道:“今日一见,太学腐化至此,管中窥豹可知天下人面目之丑陋。” 牧均冷然道:“一切纷争从来都是由人引起,世间存在着太多丑陋的人,世人皆言仁义,但又有几个人是真正的君子,走在大街之上,所有人都伪装的如同君子一般,但实际的嘴脸谁又不清楚?只不过世人都在伪装着自己。” 陶道明的语气分外沉重:“要想让天下真正的和平安定,只有每个人都成为圣贤君子才有可能,否则这世界永远难以平静,前辈说问天九鼎乃是浩劫之源,但这世上一切劫数的源头却都是人心。”他忽然生出一股无力感,以往面对任何敌人,任何劫数,他都有勇往直前的斗志,但今天他却不由有些灰心。 因为他实在看不到平定天下烽火的希望,只要有人的地方就会存在斗争,然后就会产生罪恶,除非天下所有人都死干净,否则这世界永远不会平静。 再强的人,再可怕的阴谋家,也不可能永远作乱,但人心中的恶魔却会时时刻刻伺机吞噬一切。 自己为天下苍生奋斗,平定各方灾祸,但这一切灾祸的来源其实还是他们自己,那么所有的作为又有何意义呢,真的有希望吗? 对此,牧均给他算了一条有关概率的数学题:“假如一个人是正人君子的可能性是万分之一,那么两个人都是正人君子的可能性是多少?” 陶道明苦笑道:“万分之一乘以万分之一,是亿分之一。” “那三个人呢?” “万亿分之一!” “天下五域有多少人口?” “这个没有准确的数字,只有大概的估计,约莫是数百亿。” “那么天下所有人都是正人君子,五域迎来真正安定的概率就是万分之一的几百亿次方。” 万分之一的数百亿次方是多么小的一个数字?就是分子为一,分母是前面几个大于等于一的数字,后面带了上千亿个零。 这样的概率究竟是多么小? 也就比天下所有人生出的孩子都是男的,困难了五千的的数百亿次方倍。 一个人是男是女的可能性都是二分之一,那么天下所有人都是男人的可能性的亿亿亿亿亿……分之一,就是所有人都是正人君子,天下再没有灾祸与罪恶的可能性。 那么可能所有人都是男人或是女人吗?理论上来说是有可能的,但实际情况谁都明白,那么一件比这件事出现的概率还要小无数倍的事情呢? “其实也还是有可能的,从概率的角度来说,只要世上存在一个正人君子,那么就有可能会有第二个、第三个,继而所有人都是。这就是古往今来一切圣贤所追求的,比让所有人都是男人还困难了无数倍的终极目标,大同世界!”牧均郑重的说道。 “前辈你举的这个例子可真贴切……”陶道明苦笑着,比所有人都是男人还要困难无数倍,这样的目标纵然理论上有着可能,但真的有希望吗? “只要分子上的那个一还在,那么无论分母后面有着多少个零,